• Cecropin-A [E9H][D17K][T33A] peptide

Cecropin-A [E9H][D17K][T33A] peptide

Not For Human Use, Lab Use Only.

Cat.#: 318832

Size:
Optional Service: TFA RemovalWhat's this?

Special Price 467.5 USD

Availability: 4 weeks
- +

Add to cart to get an online quotation

Product Information

  • Product Name
    Cecropin-A [E9H][D17K][T33A] peptide
  • Documents
  • Sequence Shortening
    H-KWKLFKKIHKVGQNIRKGIIKAGPAVAVVGQAAQIAK-OH
  • Sequence
    H-Lys-Trp-Lys-Leu-Phe-Lys-Lys-Ile-His-Lys-Val-Gly-Gln-Asn-Ile-Arg-Lys-Gly-Ile-Ile-Lys-Ala-Gly-Pro-Ala-Val-Ala-Val-Val-Gly-Gln-Ala-Ala-Gln-Ile-Ala-Lys-OH
  • Length (aa)
    37
  • Peptide Purity (HPLC)
    95.2%
  • Molecular Formula
    C186H317N55O42
  • Molecular Weight
    3995.83
  • Source
    Synthetic
  • Form
    Powder
  • Description
    In recent years, antimicrobial peptides have received increased interest and are potential substitutes for antibiotics. However, natural antimicrobial peptides are always toxic to mammalian cells and usually exhibit weak antibacterial activity, which restrict their wide application. In this study, a novel antibacterial peptide named PEW300 was designed with three mutations to the parental peptide cecropin A. As predicted by bioinformatic programs, the positive charge of PEW300 increased from + 6 to + 9 compared with cecropin A, and the grand average of hydropathicity increased from - 0.084 to - 0.008. Expression of PEW300 resulted in serious inhibition of Escherichia coli BL21(DE3) cells, indicating designed PEW300 may have stronger antibacterial activity. A simple, fast, and low-cost approach without tedious protein purification steps was selected for the efficient production of PEW300 by fusion with ELK16 and about 7.38 μg/mg wet cell weight PEW300 was eventually obtained. Purified PEW300 exhibited strong antibacterial activity against various Gram-positive and Gram-negative bacteria which was enhanced four- to sevenfold compared with the parental peptide cecropin A. Besides, PEW300 had no hemolytic activity toward mammalian cells even at high concentration (224 ng/μl). PEW300 showed good stability in neutral and alkaline solutions. Moreover, PEW300 was thermally stable even at up to 100 °C and resistant to proteinase K, pepsin, snailase, and trypsin. The incubation with human serum had no effect on the antibacterial activity of PEW300. All these results demonstrated that PEW300 designed in this work may have good potential as a candidate pharmaceutical agent.
  • Storage Guidelines
    Normally, this peptide will be delivered in lyophilized form and should be stored in a freezer at or below -20 °C. For more details, please refer to the manual:Handling and Storage of Synthetic Peptides
  • References
    • Wang M, Lin J, Sun Q, Zheng K, Ma Y, Wang J. Design, expression, and characterization of a novel cecropin A-derived peptide with high antibacterial activity. Appl Microbiol Biotechnol. 2019;103(4):1765-1775. doi:10.1007/s00253-018-09592-z
  • About TFA salt

    Trifluoroacetic acid (TFA) has a significant impact on peptides due to its role in the peptide synthesis process.

    TFA is essential for the protonation of peptides that lack basic amino acids such as Arginine (Arg), Histidine (His), and Lysine (Lys), or ones that have blocked N-termini. As a result, peptides often contain TFA salts in the final product.

    TFA residues, when present in custom peptides, can cause unpredictable fluctuations in experimental data. At a nanomolar (nM) level, TFA can influence cell experiments, hindering cell growth at low concentrations (as low as 10 nM) and promoting it at higher doses (0.5–7.0 mM). It can also serve as an allosteric regulator on the GlyR of glycine receptors, thereby increasing receptor activity at lower glycine concentrations.

    In an in vivo setting, TFA can trifluoroacetylate amino groups in proteins and phospholipids, inducing potentially unwanted antibody responses. Moreover, TFA can impact structure studies as it affects spectrum absorption.

  • Molar Concentration Calculator

  • Dilution Calculator

  • Percent Concentration Calculator

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

Mass
=
Concentration
×
Volume
×
Molecular Weight

Peptide Property

  • Analysed Sequence:H-KWKLFKKIHKVGQNIRKGIIKAGPAVAVVGQAAQIAK-OH
  • Chemical Formula:C186H317N55O42
  • Sequence length:37
  • Extinction coefficient:5690 M-1cm-1
  • GRAVY:-0.01
  • Mw average:3995.83
  • Theoretical pI:11.96
  • Data Source:Peptide Property Calculator

GRAVY = grand average of hydropathy

X: Hydrophobic uncharged residues, like F I L M V W A and P

X: Basic residues, like R K H

X: Acidic residues, like D E

X: Polar uncharged residues, like G S T C N Q and Y

Peptide Services: NovoPro's peptide synthesis services include standard chemical peptide synthesis, peptide modification, peptide libraries, and recombinant peptide expression.

Standard Peptide Synthesis: NovoPro offers quality peptides at the most competitive prices in the industry, starting at $3.20 per amino acid. NovoPro provides PepBox – Automatic Quote Tool for online price calculation.

Peptide Modifications: NovoPro offers a wide range of peptide modification services including isotope labeling (2H, 15N, and 13C), multiple disulfide bonds, multiple phosphorylations, KLH, BSA, ovalbumin, amidation, acetylation, biotin, FITC, etc.

Please note: All products are "FOR RESEARCH USE ONLY AND ARE NOT INTENDED FOR DIAGNOSTIC OR THERAPEUTIC USE"